If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4t=18
We move all terms to the left:
t^2-4t-(18)=0
a = 1; b = -4; c = -18;
Δ = b2-4ac
Δ = -42-4·1·(-18)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{22}}{2*1}=\frac{4-2\sqrt{22}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{22}}{2*1}=\frac{4+2\sqrt{22}}{2} $
| 19.5=7.5r+5.5r | | 3x-6.1=12.2 | | 2/3x-6=16-1/3x | | 2/3x+4=0(-6) | | -4r-11=53 | | 6a+9=123 | | 2+9z=2+z | | 19v+18=3+18v | | 0=17-(5n/4)+8^3 | | 2/5y-3=5(20) | | 21.5+6.5a=-7.5(5.5a+9.5 | | -3(x-1)=27(-8)* | | -4+7c=8c | | 4x+9=7x+31 | | -9/2x=-8 | | w3=-27 | | -9+u=3+3u-6 | | 4(3x-5)=4(2) | | 4/5x=-7 | | 2(x+9)=24(3) | | x/4=156 | | -4v+1=-7 | | (5/8)x=40 | | 5a/7=24 | | 219=-5+8b | | -8=v/7 | | -9+9v=10+6v-1 | | 10=7x-30-2x | | -7x-2x-3+2=8(-1) | | 15v+10=13 | | 3n-10=-49 | | -2.5(9.5s+4)=-29.5+4.5 |